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LUX: the claim
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e Would essentially eradicate any possibility of reconciling low-mass anomalies
(DAMA, CoGeNT, CRESST, CDMS-Si) with their null result through tweaks in

particle phenomenology (isospin-violating DM, etc.)

e We are informed, via press-conference, that "we screwed up”.



Really?

PRE-LUX ERA POST-LUX ERA

1) Understand the response of 1) Talk to the press (esp. if
your detector. desperate for funding).

2) Produce physics results, 2) Produce physics results,
share information with your share information with your
peers. peers.

3) Talk to the press (optional, 3) Understand the response of
only if you really must). your detector.

e A bit of trickery involved in their treatment of V
going to concentrate on the whoopers.

e DUt today we are just



The ever-changing L«
(today I'll claim it is not done mutating)
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e This “quenching factor” for primary scintillation (S1) has been in a state of flux
over the last decade, monotonically towards smaller values (= less sensitivity)
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e Semi-empirical models like NEST are only as good as the quality of the data
they are fed (guano in -> guano out).



yield relative to Co-57 gamma
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D. McKinsey, LUX co-spokesman,
circa 2010 (!?)

e Semi-empirical models like NEST are only as good as the quality of the data

they are fed (guano in -> guano out).
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e Semi-empirical models like NEST are only as good as the quality of the data
they are fed (guano in -> guano out).
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e Latest low-energy L measurements can only be considered an upper limit,
and not particularly conservative at that. Because of the specific mistakes
made in the methodology employed, it is possible to obtain a finite £ . at
energies where it would be identically zero.
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A “no contest” sort of discussion with the authors of these measurements: the
methodology is flawed (no arguing about this). In most recent measurements
by Plante, the energy resolution is left a free parameter (and observed to
diverge from expected value for 3 datapoints affected by triggering threshold)
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e An Leff rapidly dropping fo zero at few keVnr is not only possible, but highly
probable. Would render LXe detectors essentially insensitive to WIMPs in the
ROI of recent anomalies.
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BONUS WHEN LIT: LUX assumes that the effect of the drift field on
recombination Sl is small. This is based on Manzur ef al. measurements, which
are completely unrealiable. ZEPLIN measures L in situ and under drift field,
finding it going to zero at few keVnr. SCENE has recently measured a very
large effect of this field in LAT, expected to worsen at lower energy. SCENE to
repeat measurements with LXe in Feb. 2014.



Meanwhile, in NaI[Tl] land...

PRC 88, 035806 (2013)
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e When measured in absence of threshold effects, the low-energy quenching
factor for Na recoils in NaI[Tl] is observed to go to zero at few keVnr.

e These measurements have ~4 more light yield (T4 lower threshold) than
previous ones, bypassing this issue of “threshold effects”.



Take it while lying down? NEVERRRR...

PRL 110, 211101 (2013)
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A photoneutron Y-88/Be source emits monochromatic 152 keV neutrons,
creating a recoil distribution essentially identical fo that expected from a ~10
GeV WIMP.

We have successfully used it at UC to characterize the response of NaI[Tl],
C3F8, and CF3I. In the case of LXe, it probes exactly the recoil range of
interest (<4.5 keVnr) to put these L, questions to rest.



If the mountain won't come to Muhammad...
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(a repeat of NaI[Tl] measurement)

10%¢ s
FNEST L 100 /s **Y/Be ]
= off 35 cm from SCENE detector (LXe) -
1 03 C 20 cm lead in front of source __
E 14 PHE/keVee E

"XENON-100 L_

102 3
g PRELIMINARY

10"}

10%%
;fig.5 arXiv:1010.5187 Leff

*Y/Be-*Y/Al residual (per day)

-1 . C ] ,....l.._
101 10 100

mean PHE (no fluctuations)

e We will be taking Y-88/Be data on LXe at FNAL by mid-December.
e We shall know who “screwed up” very soon.
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e We will be taking Y-88/Be data on LXe at FNAL by mid-December.
e We shall know who “screwed up” very soon.



(I believe you invited me to discuss something else)



A brief chronology of past CoGeNT results

CoGeNT employs PPCs (JCAP 09 (2007) 009) to search
for low-mass WIMPs, specifically aiming to test the
DAMA/LIBRA claim. PPCs offer required stability, low
threshold, and rejection of surface events. At higher
energies, rejection of gamma backgrounds
(MAJORANA and GERDA, Ov p-decay searches).
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A brief chronology of past CoGeNT results

® CoGeNT employs PPCs (JCAP 09 (2007) 009) to search
for low-mass WIMPs, specifically aiming to test the
DAMA/LIBRA claim. PPCs offer required stability, low
threshold, and rejection of surface events. At higher

energies, rejection of gamma backgrounds PRL 101, 251301 (2008)
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A brief chronology of past CoGeNT results

® CoGeNT employs PPCs (JCAP 09 (2007) 009) to search
for low-mass WIMPs, specifically aiming to test the
DAMA/LIBRA claim. PPCs offer required stability, low
threshold, and rejection of surface events. At higher
energies, rejection of gamma backgrounds
(MAJORANA and GERDA, Ov p-decay searches).

e First results (PRL 101 (2008) 251301) in a shallow site PHYSICAL REVIEW D 88, 012002 (2013)
eliminated the last region of WIMP parameter space
allowed for DAMA/LIBRA within a standard halo model
(SHM). This exclusion later confirmed by other
searches (e.g., CDMS low-threshold analyses).
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e Irreducible low-energy exponential excess found
following surface event rejection (PRL 106 (2011)
131301). WIMP interpretation in vicinity of DAMA/
LIBRA ROIL The improved rejection allowed for by
larger exposure, and a best-effort at background
simulation, have thus far failed to account for this
excess (PRD 88 (2013) 012002).
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A brief chronology of past CoGeNT results

CoGeNT employs PPCs (JCAP 09 (2007) 009) to search
for low-mass WIMPs, specifically aiming to test the
DAMA/LIBRA claim. PPCs offer required stability, low
threshold, and rejection of surface events. At higher
energies, rejection of gamma backgrounds
(MAJORANA and GERDA, Ov p-decay searches).

First results (PRL 101 (2008) 251301) in a shallow site
eliminated the last region of WIMP parameter space
allowed for DAMA/LIBRA within a standard halo model

(SHM). This exclusion later confirmed by other
searches (e.g., CDMS low-threshold analyses).

Irreducible low-energy exponential excess found
following surface event rejection (PRL 106 (2011)
131301). WIMP interpretation in vicinity of DAMA/
LIBRA ROIL The improved rejection allowed for by
larger exposure, and a best-effort at background
simulation, have thus far failed to account for this
excess (PRD 88 (2013) 012002). Possible very similar
excess in NR band in CDMS-Ge data (Collar & Fields,
arXiv:1204.3559, see also R. Nelsons talk later today).

Run interrupted by Soudan fire: 15 mo of data exhibit
low-energy modulation in bulk events, compatible with
DAMA/LIBRA (PRL 107 (2011) 141301). Data-sharing
allowed for independent analyses and interpretations.
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A brief chronology of past CoGeNT results

CoGeNT employs PPCs (JCAP 09 (2007) 009) to search
for low-mass WIMPs, specifically aiming to test the
DAMA/LIBRA claim. PPCs offer required stability, low
threshold, and rejection of surface events. At higher
energies, rejection of gamma backgrounds
(MAJORANA and GERDA, Ov p-decay searches).

First results (PRL 101 (2008) 251301) in a shallow site
eliminated the last region of WIMP parameter space
allowed for DAMA/LIBRA within a standard halo model

(SHM). This exclusion later confirmed by other
searches (e.g., CDMS low-threshold analyses).

Irreducible low-energy exponential
following surface event rejection (PRL 106 (2011)
131301). WIMP interpretation in vicinity of DAMA/
LIBRA ROIL The improved rejection allowed for by
larger exposure, and a best-effort at background
simulation, have thus far failed to account for this
excess (PRD 88 (2013) 012002). Possible very similar
excess in NR band in CDMS-Ge data (Collar & Fields,
arXiv:1204.3559, see also R. Nelsons talk later today).

Run interrupted by Soudan fire: 15 mo of data exhibit
low-energy modulation in bulk events, compatible with
DAMA/LIBRA (PRL 107 (2011) 141301). Data-sharing
allowed for independent analyses and interpretations.

Much ensuing action: CRESST and CDMS-Si anomalies,
XENON exclusions (and criticisms thereof), etc. TBD.
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What is new?

e Detector recovered from 3 mo post-fire outage w/o
significant changes in performance. It has been
continuously taking data ever since. All data are usable
(compare to 10%-40% in CDMS low-energy analyses).

noise FWHM (eV)

0.1% rate variation
in 0.5-0.9 keVee region 3
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What is new?

e Detector recovered from 3 mo post-fire outage w/o
significant changes in performance. It has been
continuously taking data ever since. All data are usable
(compare to 10%-40% in CDMS low-energy analyses).
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What is new?

Detector recovered from 3 mo post-fire outage w/o
significant changes in performance. It has been
continuously taking data ever since. All data are usable
(compare to 10%-40% in CDMS low-energy analyses).

Large exposure allows optimal separation of bulk and
surface events down to 0.5 keVee threshold. Rise-time
behavior as predicted by simulations and calibrations
(PRD 88 (2013) 012002). Smooth variation of fit
parameters with energy.

Paper under review, preprint to appear soon. Data to
be released in energy, time-stamp, and rise-time
format. A straightforward analysis indicates a
persistent annual modulation exclusively at low energy
and for bulk events. Best-fit phase consistent with
DAMA/LIBRA (small offset may be meaningful). Similar
best-fit parameters to 15 mo dataset, but with much
better bulk/surface separation (790% SA for~90% BR)
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What is new?

Detector recovered from 3 mo post-fire outage w/o
significant changes in performance. It has been
continuously taking data ever since. All data are usable
(compare to 10%-40% in CDMS low-energy analyses).

Large exposure allows optimal separation of bulk and
surface events down to 0.5 keVee threshold. Rise-time
behavior as predicted by simulations and calibrations
(PRD 88 (2013) 012002). Smooth variation of fit
parameters with energy.

Paper under review, preprint to appear soon. Data to
be released in energy, time-stamp, and rise-time
format. A straightforward analysis indicates a
persistent annual modulation exclusively at low energy
and for bulk events. Best-fit phase consistent with
DAMA/LIBRA (small offset may be meaningful). Similar
best-fit parameters to 15 mo dataset, but with much
better bulk/surface separation (790% SA for~90% BR)

Unoptimized frequentist analysis yields ~2.20
preference over null hypothesis. This however does not
take into account the possible relevance of the
modulation amplitude found...
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What is new?

Detector recovered from 3 mo post-fire outage w/o
significant changes in performance. It has been
continuously taking data ever since. All data are usable
(compare to 10%-40% in CDMS low-energy analyses).

Large exposure allows optimal separation of bulk and
surface events down to 0.5 keVee threshold. Rise-time
behavior as predicted by simulations and calibrations
(PRD 88 (2013) 012002). Smooth variation of fit
parameters with energy.

Paper under review, preprint to appear soon. Data to

be released in energy, time-stamp, and rise-time
format. A straightforward analysis indicates a
persistent annual modulation exclusively at low energy
and for bulk events. Best-fit phase consistent with
DAMA/LIBRA (small offset may be meaningful). Similar
best-fit parameters to 15 mo dataset, but with much
better bulk/surface separation (790% SA for~90% BR)

Unoptimized frequentist analysis yields ~2.20
preference over null hypothesis. This however does not
take into account the possible relevance of the
modulation amplitude found...

Modulation amplitude is 4-7 times larger than that
predicted by the SHM. Finding an absence of
modulation would have severely constrained non-
standard halo models as explanations for DAMA/LIBRA.
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What to make out of this?

Most (uneducated) statements about the incompatibility
of DAMA/LIBRA with other current anomalies forget
to notice the underlaying assumption of a SHM.
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Rough sketch: two WIMPs inducing the same

DAMA/LIBRA observable (absolute modulation),
but having a different fractional modulation. A
SHM cannot induce the large modulation case.



What to make out of this?

Most (uneducated) statements about the incompatibility
of DAMA/LIBRA with other current anomalies forget
to notice the underlaying assumption of a SHM.

The truth is, DAMA/LIBRA shows no obvious spectral
excess, and therefore we cannot know the magnitude
of a possible fractional modulation in WIMP rate.
CoGeNT provides both spectral and modulation
information, removing this source of uncertainty.
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What to make out of this?

Most (uneducated) statements about the incompatibility
of DAMA/LIBRA with other current anomalies forget
to notice the underlaying assumption of a SHM.

The truth is, DAMA/LIBRA shows no obvious spectral
excess, and therefore we cannot know the magnitude
of a possible fractional modulation in WIMP rate.
CoGeNT provides both spectral and modulation
information, removing this source of uncertainty.

Most recent work in halo simulations indicates that
finding a SHM (specifically a pure Maxwellian
distribution at large v) would be the surprise.
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FIG. 3: A comparison of the shapes of the total rate shown at two periods of the year, correspond-
ing to the times of year at which the rate is minimized and maximized, as well as the modulation
amplitude, for three different halo components: SHM (left), debris flow (middle), stream (right).
The normalization between panels is arbitrary.
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What to make out of this?

Most (uneducated) statements about the incompatibility
of DAMA/LIBRA with other current anomalies forget
to notice the underlaying assumption of a SHM.

The truth is, DAMA/LIBRA shows no obvious spectral
excess, and therefore we cannot know the magnitude
of a possible fractional modulation in WIMP rate.
CoGeNT provides both spectral and modulation
information, removing this source of uncertainty.

Most recent work in halo simulations indicates that
finding a SHM (specifically a pure Maxwellian
distribution at large v) would be the surprise.

A large modulation in WIMP rate can arise naturally in
many non-SHM, and in particular for large values of
Vmins like those probed for m,~10 GeV (and small Q).

A large fractional modulation for DAMA/LIBRA,
corresponding to that found in CoGeNT data, brings it
info agreement with other anomalies (CoGeNT, CDMS-
Si, and CRESST if slightly underestimating bckgs)
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Wha.'- 1-0 make Ou.l- OF fhiS? arXiv:1302.0796 (PRC in press)
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Most (uneducated) statements about the incompatibility
of DAMA/LIBRA with other current anomalies forget

to notice the underlaying assumption of a SHM.

The truth is, DAMA/LIBRA shows no obvious spectral
excess, and therefore we cannot know the magnitude
of a possible fractional modulation in WIMP rate.
CoGeNT provides both spectral and modulation
information, removing this source of uncertainty.

Most recent work in halo simulations indicates that
finding a SHM (specifically a pure Maxwellian
distribution at large v) would be the surprise.

A large modulation in WIMP rate can arise naturally in
many non-SHM, and in particular for large values of
Vmins like those probed for m, ~10 GeV (and small Qy,)-

A large fractional modulation for DAMA/LIBRA,
corresponding to that found in CoGeNT data, brings it
info agreement with other anomalies (CoGeNT, CDMS-
Si, and CRESST if slightly underestimating bckgs)

However, this statement ignores the 800 |b gorilla in

the room: Qu, is not well-established (whereas
CoGeNT's Qg, is solid, see JCAP 09 (2007) 009).
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What to make out of this?

Most (uneducated) statements about the incompatibility
of DAMA/LIBRA with other current anomalies forget

to notice the underlaying assumption of a SHM.

The truth is, DAMA/LIBRA shows no obvious spectral
excess, and therefore we cannot know the magnitude
of a possible fractional modulation in WIMP rate.
CoGeNT provides both spectral and modulation
information, removing this source of uncertainty.

Most recent work in halo simulations indicates that
finding a SHM (specifically a pure Maxwellian
distribution at large v) would be the surprise.

A large modulation in WIMP rate can arise naturally in
many non-SHM, and in particular for large values of
Vmins like those probed for m,~10 GeV (and small Q).

A large fractional modulation for DAMA/LIBRA,
corresponding to that found in CoGeNT data, brings it
info agreement with other anomalies (CoGeNT, CDMS-
Si, and CRESST if slightly underestimating bckgs)

However, this statement ignores the 800 |b gorilla in

the room: Qg, is not well-established (whereas
CoGeNT's Qg, is solid, see JCAP 09 (2007) 009).

Recent efforts to isolate astrophysical (halo)
uncertainties (e.g., PRD 83 (2011) 103514) are the best
way to examine this complex situation.
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limit) as a function of Q, and WIMP mass, taking
DAMA/LIBRA as the input, and removing
astrophysical uncertainties. Units are the same as
in CoGeNT (counts/30d) plot a few transparencies

above.

Plot by Chris Kelso, using the halo-independent
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see also PRD 85 (2012) 043515).

16

10

6 8 10
Mpy (GeV)




What to make out of this?

Most (uneducated) statements about the incompatibility
of DAMA/LIBRA with other current anomalies forget

to notice the underlaying assumption of a SHM.

The truth is, DAMA/LIBRA shows no obvious spectral
excess, and therefore we cannot know the magnitude
of a possible fractional modulation in WIMP rate.
CoGeNT provides both spectral and modulation
information, removing this source of uncertainty.

Most recent work in halo simulations indicates that
finding a SHM (specifically a pure Maxwellian
distribution at large v) would be the surprise.

A large modulation in WIMP rate can arise naturally in
many non-SHM, and in particular for large values of
Vmins like those probed for m,~10 GeV (and small Q).
A large fractional modulation for DAMA/LIBRA,
corresponding to that found in CoGeNT data, brings it
info agreement with other anomalies (CoGeNT, CDMS-
Si, and CRESST if slightly underestimating bckgs)
However, this statement ignores the 800 |b gorilla in
the room: Qu, is not well-established (whereas
CoGeNT's Qg, is solid, see JCAP 09 (2007) 009).
Recent efforts to isolate astrophysical (halo)
uncertainties (e.g., PRD 83 (2011) 103514) are the best
way to examine this complex situation.

The actual few-keVnr value of Q, . will be keystone in

determining if DAMA/LIBRA is in agreement with all
other low-energy anomalies, or broadly excluded for
any WIMP halo model.

Expected modulation amplitude in CoGeNT (upper
limit) as a function of Q, and WIMP mass, taking
DAMA/LIBRA as the input, and removing

astrophysical uncertainties. Units are the same as
in CoGeNT (counts/30d) plot a few transparencies

above.

Plot by Chris Kelso, using the halo-independent
formalism by P. Fox et al. (PRD 83 (2011) 103514,
see also PRD 85 (2012) 043515).
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If Qu, is the standard ~0.3, then move on, there is
nothing fo see here...



A few personal impressions:

o If Q, for 2-6 keVee in NaI[Tl] is the usual ~0.3, then DAMA/
LIBRA and CoGeNT's observations most probably have nothing
to do with each other, not within a WIMP context. It would

then seem possible fo constraint non-SHM scenarios for
DAMA, using CoGeNT dafa.
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e If on the other hand this Qy,is ~0.15, then four independent
pieces of information may be in agreement: CoGeNT's spectral
shape, its modulation, DAMAs modulation, and Q, (recall, no
spectral WIMP info from DAMA). Agreement between all
present DM anomalies is an enticing possible outcome.
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LIBRA and CoGeNT's observations most probably have nothing
to do with each other, not within a WIMP context. It would
then seem possible fo constraint non-SHM scenarios for
DAMA, using CoGeNT data.

If on the other hand this Q,is ~0.15, then four independent
pieces of information may be in agreement: CoGeNT's spectral
shape, its modulation, DAMAs modulation, and Q, (recall, no
spectral WIMP info from DAMA). Agreement between all
present DM anomalies is an enticing possible outcome.

Clearly, additional measurements of Q,,_are in order.

It seems feasible to attempt an early exercise in "“WIMP
astronomy” using existing CoGeNT data, i.e., reverse-engineer
the halo properties that would give rise fo the observed
modulation. We are attempting this, in collaboration with M.
Bellis and C. Kelso. These predictions could be tested by
GAIA satellite observations very soon.
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A few personal impressions:

If Q, for 2-6 keVee in NaI[Tl] is the usual ~0.3, then DAMA/
LIBRA and CoGeNT's observations most probably have nothing
to do with each other, not within a WIMP context. It would
then seem possible fo constraint non-SHM scenarios for
DAMA, using CoGeNT data.

If on the other hand this Q,is ~0.15, then four independent
pieces of information may be in agreement: CoGeNT's spectral
shape, its modulation, DAMAs modulation, and Q, (recall, no
spectral WIMP info from DAMA). Agreement between all
present DM anomalies is an enticing possible outcome.

Clearly, additional measurements of Q,,_are in order.

It seems feasible to attempt an early exercise in "“WIMP
astronomy” using existing CoGeNT data, i.e., reverse-engineer
the halo properties that would give rise to the observed
modulation. We are attempting this, in collaboration with M.
Bellis and C. Kelso. These predictions could be tested by
GAIA satellite observations very soon.

We should not be left forever wondering about XENON-100
excluding this low-mass ROI or not: in situ calibrations with
the Y/Be source described in PRL 110 (2013) 211101 should
settle this issue, once for all. LUX and XMASS results should
also cast light (both feature significantly lower thresholds).
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Standing challenge to XENON-100:
we hear they will gallantly take it up.



(choose your own exiting quote here)

e "In so far as a scientific statement speaks about reality,
it must be falsifiable; and in so far as it is not
falsifiable, it does not speak about reality”. K. Popper

e "Everything should be made as simple as possible, but
not simpler”. A. Einstein



(choose your own exiting quote here)

e "In so far as a scientific statement speaks about reality,
it must be falsifiable; and in so far as it is not
falsifiable, it does not speak about reality”. K. Popper

e "Everything should be made as simple as possible, but
not simpler”. A. Einstein

(We have not even opened the particle physics can-of-worms
today. However, old grandpa Al is very disappointed at you, if you
were really expecting the spherical cow)



C-4: coming up very soon

* First C-4 detector features
~1/3 of the noise of the
existing GoGeNT detector, at
~x3 its mass (1.3 kg)

* Not a one-off: its noise
characteristics are now j—
reproducible (CANBERRA R&D =
supported by NSF award 1
PHY-1003940). Second detector
expected to reach the same
noise figure at 2.7 kg, the
realistic PPC maximum.

CANBERRAS
proprietfary

* C-4 aims at a x10 total mass pdifications

increase, ~x20 background
decrease, and substantial
threshold reduction. Soudan is
our laboratory of choice,
assuming its continuity.

point contact

Design and assembly of ULB cryostat at PNNL
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COUPP: A Bubble Chamber search for Dark Matter

* World's best spin-dependent (SD) WIMP-
nucleus coupling sensitivity, and very near
CDMS'’ spin-independent (SI) sensitivity.

* 60 kg chamber commissioned at SNOLAB
and presently taking physics data. First

results this year. Second smaller chamber
(PICO-2l) targeting low-mass WIMPs.

* 500 kg design in progress (NSF+DOE
funded). Planned start of construction
2014, installation at SNOlab during 2015.
PICASSO and COUPP have merged efforts
(PICO collaboration).
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counts

PICO-2| now taking data!
(C3F8, targeted towards low-mass WIMPs)
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Properly calibrated low-E response
(Y-88/Be + tandem accel. at Montreal)
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PICO-2| now taking data!
(C3F8, targeted towards low-mass WIMPs)
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Neutron counts/7.5mV/h/g

Listening to particle interactions
(only a slight exaggeration)

Glaser (1955)

In order to see events more interesting than muons
passing straight through the chamber, we took advan-
tage of the violence of the eruption which produces an
audible “plink” at each event. A General Electric
Variable-reluctance phonograph pickup was mounted
with its stylus pressing against the wail of the chamber.
Vibration signals occurring during the quiescent period
after the expansion were allowed to trigger the lights
and take pictures. In this way we saw tracks of particles
passing through the chamber in various directions,

Martynyuk & Smirnova (1991)

The initial pressure in the volume V depends on the
energy transmitted by the particle to that volume. Conse-
quently, the characteristics of the acoustic pulse depend on
the parameters of the particle responsible for formation of the
bubble...

The parameters of these pulses must depend strongly on the
characteristics of the particle.

PICASSO collab. {(2009)
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PICASSO demonstrates o = nuc. recoil acoustic
in Superheated Droplet Detectors (SDDs)
F. Aubin ef al., New J. Phys 10 (2008) 103017

discrimination




V for piezos, arbitrary for veto

Listening to particle interactions

(only a slight exaggeration)
Neu+ron Phys. Rev. Lett. 106 (2011) 021303 A_lm
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We observe two distinct families of single bubble bulk events in a 4 kg chamber:

e Discrimination increases with frequency, as expected.

® We have a handle on which is which (Rn time-correlated pairs following injection, S-AmBe calibrations, NUMI-beam events).
e Very high discrimination against o’ s is clear (T1E-5 rejection factor, we dont have enough statistics yet to determine this)
e Discrimination is considerably better than in PICASSO' droplet detectors (multiple reasons for this).

e Challenge in obtaining same discrimination in the larger devices: increasing number of sensors while reducing (o,n).

Relaxes internal radiopurity goals by 4-5 orders of magnitude



SD proton cross section per nucleon[cm2]

PICO-2| now taking data!
(C3F8, targeted towards low-mass WIMPs)
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PICO-250l to provide excellent demonstrated sensitivity to low-mass
WIMPs and exhaustive exploration of SUSY models via SD couplings




